选择正确的可视化技术来进行数据展示

扫码下载官方App

App Store
下载
Android
下载
当前位置:首页综合能源服务综合能源服务圈帖子详情
23

选择正确的可视化技术来进行数据展示

本帖由工业可视化发布于2021-08-24 15:05:37471次浏览0人跟帖

  • 23
  • 471
关注
工业可视化
2021年08月24日
 

Hello There , Namaste!!What Is Data Visualization?Data visualization is the technique of converting raw data into a visual representation , such as a map or graph, to make data easier for us to understand and extract useful insights .The main goal of data visualization is to put large datasets into visual representation . It is one of the important steps and simple steps when it comes to data scienceSelecting Best Data Visualization TechniquesPicking out best techniques solely depends upon the type of visualization we want to achieve between various data sets, such as:1 Relation2 Distribution3 Composition4 Comparison1 RelationIf our main goal is to show a relation between between two or more sets of variables , the best choices would be:Bubble Plot ( in case of three variables/dimensions)Scatter Plot ( in case of two variables/dimensions)2 DistributionIf our main goal is to show the distribution of the data points , the best choices would be:Histogram/Column Chart( in case of few data points )Line Histogram ( in case of large number of data points)Scatter plot ( in case of two variables)3 CompositionIf our aim is to highlight the composition of our data, having following properties:a. Dynamic Nature Of composition:Best Choices would be:Stacked Column ChartStacked Area Chartb. Static Nature Of composition:Best Choices would be:Pie ChartWaterfall Chart4 ComparisonIf our main goal is to show a direct comparison between two or more sets of data points / information in following way:a. Comparison on the basis of Multiple itemsBest Choices would be:Spider charts( In case of Less Items)Bar charts( In case of More Items)Tableb. Comparison Over TimeBest Choices would be:Line ChartColumn Chart( just like we used for distribution as mentioned above)Area ChartSumming up all the above mentioned topicsWith this I finish this blogThank you so much for taking your precious time to read this blog. Feel free to point out any mistake(I’m a learner after all) and provide respective feedback or leave a comment.运用 Hightopo 自主研发的 HT for Web ,能轻松实现数据可视化。

打开北极星学社App,阅读体验更佳
  • 点赞

  • 加热

  • 收藏

加热收藏

评论(0条)
还可输入600字

致老用户的一封家书

各位北极星论坛的老用户们,时至今日北极星论坛已经陪伴了我们很多年,但是这并不是一封告别信,而是通知各位坛友,新的征程即将开始!

2024年1月1日后,原北极星论坛会关闭,退出历史的舞台。新的社区(北极星社区-电力环保能源论坛|技术交流|资料分享平台)即将开始!在2024年1月1日之前,原论坛只能浏览,无法进行回复/发帖等任何交互性行为。

新社区将传承老论坛的意志,以服务好所有用户为核心!在这里,您可以得到更好的用户体验,最新的行业资讯,以及丰厚的积分兑换礼品,

各位坛友,我们在这里等你!

北极星社区-安老师

回家认证